Kramer Electronics, Ltd.

USER MANUAL

Model:
PL-8
Low Voltage Relay Controller

Contents

1 Introduction 1
2 Getting Started 1
2.1 Quick Start 2
3 Overview 2
4 Your PL-8 Low Voltage Relay Controller 3
5 Configuring the PL-8 Low Voltage Relay Controller 5
5.1 The K-NET PINOUT 6
5.2 The RS-232 PINOUT 6
6 Firmware Upgrade 7
6.1 Downloading from the Internet 7
6.2 Connecting the PC to the RS-232 Port 7
6.3 Upgrading Firmware 7
7 Kramer Protocol 12
7.1 PL-8 Commands in Protocol 2000 12
7.2 PL-8 Commands in Protocol 3000 15
7.2.1 Operating Commands 15
7.2.2 Identification Commands 15
7.2.3 Reset Command 15
7.2.4 K-NET management commands 15
7.3 Protocol 3000 Syntax 16
7.3.1 Host Message Format 16
7.3.2 Command Terms 17
7.3.3 Entering Commands 17
7.3.4 Command Forms 18
7.3.5 Command Chaining 18
7.3.6 Maximum String Length 18
7.3.7 Backward Support 18
8 Technical Specifications 18
Figures
Figure 1: PL-8 Low Voltage Relay Controller 3
Figure 2: PL-8 Underside 4
Figure 3: Connecting the PL-8 Low Voltage Relay Controller 5
Figure 4: Wiring the K-NET Connector 6
Figure 5: RS-232 PINOUT Connection 6
Figure 6: Splash Screen 8
Figure 7: Atmel - Flip Window 8
Figure 8: Device Selection Window 9
Figure 9: Device Selection window 9
Figure 10: Loading the Hex 10
Figure 11: RS-232 Window 10
Figure 12: Atmel - Flip Window (Connected) 11
Figure 13: Atmel - Flip Window (Operation Completed) 12
Tables
Table 1: PL-8 Low Voltage Relay Controller Features 4
Table 2: Underside Features 4
Table 3: RS-232 PINOUT Connection 6
Table 4: Protocol Definitions 13
Table 5: Instruction Codes for Protocol 2000 13
Table 6: Technical Specifications of the PL-8 Low Voltage Relay Controller 18

1 Introduction

Welcome to Kramer Electronics! Since 1981, Kramer Electronics has been providing a world of unique, creative, and affordable solutions to the vast range of problems that confront the video, audio, presentation, and broadcasting professional on a daily basis. In recent years, we have redesigned and upgraded most of our line, making the best even better! Our 1,000-plus different models now appear in 11 groups ${ }^{1}$ that are clearly defined by function.

Congratulations on purchasing your Kramer TOOLS: PL-8 Low Voltage Relay controller, which is ideal for controlling screens, projectors, lights, security gates, and so on via the relays.

The package includes the following items:

- PL-8 Low Voltage Relay controller
- Power adapter (12V DC Input)
- This user manual ${ }^{2}$

2 Getting Started

We recommend that you:

- Unpack the equipment carefully and save the original box and packaging materials for possible future shipment
- Review the contents of this user manual
- Use Kramer high performance high resolution cables ${ }^{3}$

[^0]
2.1 Quick Start

This Quick start chart summarizes the basic setup and operation steps:

3 Overview

The Kramer PL-8 is a high performance relay controller. It can connect to up to eight devices. The PL-8 is intended to be used for the simplified and centralized control of room functions (such as lighting, closing blinds, and so on).

The PL-8:

- Features four relays that have normally open (NO) and normally closed (NC) contacts, and four relays that have normally open (NO) contacts
- Has a LINK LED to indicate that communication is established and an ON LED that lights when the PL-8 receives power
- Can be controlled by Kramer SummitView ${ }^{\mathrm{TM}}$ control units such as the SV-551, RC-62 and RC-63
- Can be upgraded via RS-232
- Is housed in a Kramer TOOLS enclosure and is 12 V DC fed Achieving the best performance means:
- Connecting only good quality connection cables, thus avoiding interference, deterioration in signal quality due to poor matching, and elevated noise levels (often associated with low quality cables)
- Avoiding interference from neighboring electrical appliances and positioning your PL-8 away from moisture, excessive sunlight and dust

Caution - No operator-serviceable parts inside unit.
Warning - Use only the Kramer Electronics input power wall adapter that is provided with this unit ${ }^{1}$.

Warning - Disconnect power and unplug unit from wall before installing or removing device or servicing unit.

4 Your PL-8 Low Voltage Relay Controller

Figure 1 and Table 1 define the PL-8:

Figure 1: PL-8 Low Voltage Relay Controller

Table 1: PL-8 Low Voltage Relay Controller Features

\#	Feature	Function
1	REL Terminal Block (from 1 to 4)	Connect to room items ${ }^{1}$. The PINOUT is: NO: Normally Open; C: Common Voltage; NC: Normally Closed
2	REL Terminal Block (from 5 to 8)	Connect to room items'. The PINOUT is: NO: Normally Open; C: Common Voltage
3	RS-232 Terminal Block	Connects to the RS-232 port on a PC
4	K-NET ${ }^{\text {TM }}{ }^{2}$ Terminal Block Connector	PIN GND is for the Ground connection ${ }^{3}$; PIN B (-) and PIN A $(+)$ are for RS-485, and PIN +12 V is for powering the unit
5	LINK LED	Illuminates when a link is established
6	ONLED	Illuminates when receiving power

Figure 2 and Table 2 define the underside of the PL-8

Figure 2: PL-8 Underside
Table 2: Underside Features

\#	Feature	Function
1	CONTROL DIP-switches ${ }^{4}$	Set DIP 8 ON to use protocol 2000 Set DIP 80 FF to use protocol 3000 over K-NET ${ }^{\text {TM }}$
2	RS-485 TERM Switch	Switch for line termination of the unit
3	PROGRAM Switch	Switch to PROGRAM for firmware upgrade

[^1]
5 Configuring the PL-8 Low Voltage Relay Controller

To connect the PL-8, as illustrated in the example in Figure 3, do the following:

1. Connect the following items to the relays ${ }^{1}$:

- Window blinds to the REL 1 terminal block connector
- A screen to the REL 3 terminal block connector
- A projector lift to the REL 4 terminal block connector
- The Kramer RB-8 8 Channel Power Controller ${ }^{2}$ to the REL 8 terminal block connector

2. Connect a room controller via the K-NET ${ }^{\text {TM }}$ terminal block connector, see section 5.1.
Alternatively, you can connect a PC via the RS-232 port ${ }^{3}$ (not shown in Figure 3) ${ }^{4}$.

Figure 3: Connecting the PL-8 Low Voltage Relay Controller

[^2]
5.1 The K-NET PINOUT

Figure 4 defines the K-NET ${ }^{\text {TM }}$ PINOUT:

Figure 4: Wiring the K-NET Connector

5.2 The RS-232 PINOUT

The RS-232 9-pin D-sub port PINOUT is defined in Figure 5 and Table 3:
RS-232 PINOUT

Figure 5: RS-232 PINOUT Connection
Table 3: RS-232 PINOUT Connection

Connect this PIN on the Terminal Block Connector:	To this PIN on the
9-pin D-sub Connector	
Tx	PIN 2
Rx	PIN 3
GND	PIN 5

6 Firmware Upgrade

The PL-8 firmware is located in FLASH memory, which lets you upgrade to the latest Kramer firmware version in minutes! The process involves:

- Downloading from the Internet (see section 6.1)
- Connecting the PC to the RS-232 port (see section 6.2)
- Upgrading Firmware (see section 6.3)

6.1 Downloading from the Internet

You can download the up-to-date file ${ }^{1}$ from the Internet. To do so:

1. Go to our Web site at www.kramerelectronics.com and download the file: "FLIP_PL8.zip" from the Technical Support section.
2. Extract the file: "FLIP_PL8.zip" to a folder (for example, C:\Program Files \backslash Kramer Flash).
3. Create a shortcut on your desktop to the file: "FLIP.EXE".

6.2 Connecting the PC to the RS-232 Port

Before installing the latest Kramer firmware version on a PL-8 unit, do the following:

1. Connect the RS-232 rear panel terminal block connector according to section 5.2.
2. Disconnect the power.
3. Slide the underside switch to PROGRAM.
4. Connect the power.

6.3 Upgrading Firmware

Follow these steps to upgrade the firmware:

1. Double click the desktop icon: "Shortcut to FLIP.EXE".

The Splash screen appears as follows:

1 The files indicated in this section are given as an example only. File names are liable to change from time to time

Figure 6: Splash Screen
2. After a few seconds, the Splash screen is replaced by the "Atmel - Flip" window:

Figure 7: Atmel - Flip Window
3. Press the keyboard shortcut key F2 (or select the "Select" command from the Device menu, or press the integrated circuit icon in the upper right corner of the window).
The "Device Selection" window appears:

Firmware Upgrade

Figure 8: Device Selection Window
4. Click the button next to the name of the device and select from the list: AT89C51RD2:

Figure 9: Device Selection window
5. Click OK and select "Load Hex" from the File menu.

Figure 10: Loading the Hex
6. The Open File window opens. Select the correct HEX file that contains the updated version of the firmware for PL-8 (for example 44M_VIp2.hex) and click Open.
7. Press the keyboard shortcut key $F 3$ (or select the "Communication/ RS232" command from the Settings menu, or press the keys: Alt SCR). The "RS232" window appears. Change the COM port according to the configuration of your computer and select the 9600 baud rate:

Figure 11: RS-232 Window
8. Click Connect.

In the "Atmel - Flip" window, in the Operations Flow column, the Run button is active, and the name of the chip appears as the name of the third column: AT89C51RD2.
Verify that in the Buffer Information column, the "HEX File: PL8.hex" appears.

Figure 12: Atmel-Flip Window (Connected)
9. Click Run.

After each stage of the operation is completed, the check-box for that stage becomes colored green ${ }^{1}$.
When the operation is completed, all 4 check-boxes will be colored green and the status bar message: Memory Verify Pass appears ${ }^{2}$:

[^3]2 If an error message: "Not Finished" shows, click Run again

Figure 13: Atmel - Flip Window (Operation Completed)
10. Close the "Atmel - Flip" window.
11. Disconnect the power on the PL-8.
12. If required, disconnect the $R S$ - 232 terminal block connector on the PL-8 unit from the Null-modem adapter.
13. Slide the underside PROGRAM switch back to normal.
14. Connect the power to the PL-8.

7 Kramer Protocol ${ }^{1}$

By default, the PL-8 is set to protocol 3000 (see section 7.1) but is also compatible with Kramer's Protocol 2000 (see section 7.2).

You can switch protocols by setting DIP-switch 8 OFF for protocol 3000 and ON for protocol 2000.

7.1 PL-8 Commands in Protocol 2000

This RS-232/RS-485 communication protocol uses four bytes of information as defined below. For RS-232, a null-modem connection between the machine and controller is used. The default data rate is 9600 baud, with no parity, 8 data bits and 1 stop bit.

[^4]Table 4: Protocol Definitions
MSB
LSB

	DESTI- NATION	INSTRUCTION					N3
0	D	N5	N4	N2	N1	N0	
7	6	5	4	3	2	1	0

1st byte

INPUT	14	12	10				
1	16	5	4	3	12	1	0
7	6	5	3	2	1	0	

2nd byte

OUTPUT							
1	O6	O5	O4	O 3	O 2	01	00
7	6	5	4	3	2	1	0

3rd byte

MACHINE NUMBER				
M4	M3	M2	M1	M0
4	3	2	1	0

4th byte
$1^{\text {zt }}$ BYTE: \quad Bit $7-$ Defined as 0 .
D - "DESTINATION": 0 - for sending information to the switchers (from the PC);
1 - for sending to the PC (from the switcher).
N5...NO - "INSTRUCTION"
The function that is to be performed by the switcher(s) is defined by the INSTRUCTION (6 bits). Similarly, if a function is performed via the machine's keyboard, then these bits are set with the INSTRUCTION NO., which was performed. The instruction codes are defined according to the table below (INSTRUCTION NO. is the value to be set for N5...N0).

```
2 Brd
    I6...IO - "INPUT".
```

When switching (ie. instruction codes 1 and 2), the INPUT (7 bits) is set as the input number which is to be switched. Similarly, if switching is done via the machine's front-panel, then these bits are set with the INPUT NUMBER which was switched. For other operations, these bits are defined according to the table.

```
3 rd BYTE: Bit 7-Defined as 1.
    O6...O0 - "OUTPUT".
```

When switching (ie. instruction codes 1 and 2), the OUTPUT (7 bits) is set as the output number which is to be switched. Similarly, if switching is done via the machine's front-panel, then these bits are set with the OUTPUT NUMBER which was switched. For other operations, these bits are defined according to the table.
$4^{\text {th }}$ BYTE: \quad Bit $7-$ Defined as 1 .
Bit 5 - Don't care.
OVR - Machine number override.
M4...M0 - MACHINE NUMBER.
Used to address machines in a system via their machine numbers. When several machines are controlled from a single serial port, they are usually configured together with each machine having an individual machine number. If the OVR bit is set, then all machine numbers will accept (implement) the command, and the addressed machine will reply.
For a single machine controlled via the serial port, al ways set $\mathrm{M} 4 \ldots \mathrm{M} 0=1$, and make sure that the machine itself is configured as MACHINE NUMBER $=1$.

Table 5: Instruction Codes for Protocol 2000
Note: All values in the table are decimal, unless otherwise stated.

INSTRUCTION		DEFINITION FOR SPECIFIC INSTRUCTION		NOTE
\#	DESCRIPTION	INPUT	OUTPUT	
0	RESET DEVICE	0	0	1
44	SWITCH RELAY DATA	Set equal to control data input which is to be switched $0=O F F$ $1=O N$	Set equal to control data output which is to be switched	2,27
45	REQUEST STATUS OF RELAY DATA OUTPUT	0	Equal to output number whose status is reqd	3,4,27

INSTRUCTION		DEFINITION FOR SPECIFIC INSTRUCTION		NOTE
\#.	DESCRIPTION	INPUT	OUTPUT .	
61	IDENTIFY MACHINE	video machine name audio machine name video software version audio software version RS422 controller name RS422 controller version remote control name remote software version Protocol 2000 revision Control data machine name Control data software version	Request first 4 digits Request first suffix Request second suffix Request third suffix Request first prefix Request second prefix Request third prefix	13

NOTES on the above table:
NOTE 1 - When the master switcher is reset, (e.g. when it is turned on), the reset code is sent to the PC. If this code is sent to the switchers, it will reset according to the present power-down settings.

NOTES on the above table:
NOTE 1 - When the master switcher is reset, (e.g. when it is turned on), the reset code is sent to the PC. If this code is sent to the switchers, it will reset according to the present power-down settings.

NOTE 2 - These are bi-directional definitions. That is, if the switcher receives the code, it will perform the instruction; and if the instruction is performed (due to a keystroke operation on the front panel), then these codes are sent. For example, if the HEX code $\begin{array}{llll}01 & 85 & 88 & 83\end{array}$
was sent from the PC, then the switcher (machine 3) will switch input 5 to output 8 . If the user s witched input 1 to output 7 via the front panel keypad, then the switcher will send HEX codes:
$\begin{array}{llll}41 & 81 & 87 & 83\end{array}$
to the PC.
When the PC sends one of the commands in this group to the switcher, then, if the instruction is valid, the switcher replies by sending to the PC the same four bytes that it was sent (except for the first byte, where the DESTINATION bit is set high).

NOTE 3 - SETUP \# 0 is the present setting. SETUP \# 1 and higher are the settings saved in the switcher's memory, (i.e. those used for Store and Recall).

NOTE 4 - The reply to a "REQUEST" instruction is as follows: the same instruction and INPUT codes as were sent are returned, and the OUTPUT is assigned the value of the requested parameter. The replies to instructions 10 and 11 are as per the definitions in instructions 7 and 8 respectively. For example, if the present status of machine number 5 is breakaway setting, then the reply to the HEX code

OB	80	80	85
would be HEX codes			
4B	80	81	85

NOTE 13 - This is a request to identify the switcher/s in the system. If the OUTPUT is set as 0 , and the INPUT is set as 1,2 , 5 or 7 , the machine will send its name. The reply is the decimal value of the INPUT and OUTPUT. For example, for a 2216, the reply to the request to send the audio machine name would be (HEX codes):

$$
7 \mathrm{D} \quad 96 \quad 90 \quad 81 \text { (i.e. } 128_{\text {dee }}+22_{\text {dec }} \text { for } 2^{\text {nd }} \text { byte, and } 128_{\text {dece }}+16_{\text {dee }} \text { for } 3^{\text {rd }} \text { byte). }
$$

If the request for identification is sent with the INPUT set as 3 or 4 , the appropriate machine will send its software version number. Again, the reply would be the decimal value of the INPUT and OUTPUT - the INPUT representing the number in front of the decimal point, and the OUTPUT representing the number after it. For example, for version 3.5 , the reply to the request to send the version number would be (HEX codes):

$$
7 \mathrm{D} \quad 83 \quad 85 \quad 81 \text { (i.e. } 128_{\text {dec }}+3_{\text {dec }} \text { for } 2^{\text {nd }} \text { byte, } 128_{\text {dec }}+5_{\text {dec }} \text { for } 3^{\text {rd }} \text { byte). }
$$

If the OUTPUT is set as 1 , then the ASCII coding of the lettering following the machine's name is sent. For example, for the VS-7588YC, the reply to the request to send the first suffix would be (HEX codes):

$$
7 \mathrm{D} \quad \mathrm{D} 9 \quad \mathrm{C} 3 \quad 81 \text { (i.e. } 128_{\text {dee }}+\mathrm{ASCII} \text { for "Y"; } 128_{\text {dee }}+\mathrm{ASCII} \text { for "C"). }
$$

NOTE 27 -Bit 6 in the Output byte defines direction of the switched DATA (RS-232,RS- 485, RS-422). For bit $6=0$ the direction of the control DATA is from Input to Output; for bit $6=1$ the direction of the reply DATA is oposite - from Output to the Input.

Command	Example
Set relay On (Open)	$0 \times 02,0 \times 81,0 \times 80+$ Relay,0081
Set relay Off (Close)	$0 \times 02,0 \times 80,0 \times 80+$ Relay,0081
Read relay status	$0 \times 03,0 \times 80,0 \times 80+$ Relay,0081

7.2 PL-8 Commands in Protocol 3000

This RS-232/RS-485 communication protocol ${ }^{1}$ lets you control the machine from any standard terminal software (for example, Windows ${ }^{\circledR}$
HyperTerminal Application) and uses a data rate of 115200 baud, with no parity, 8 data bits, and 1 stop bit. This section describes all commands sent to the PL-8. For an explanation of the syntax and use of Protocol 3000, see section 7.2.4.

7.2.1 Operating Commands

Following are the specific commands that the room controller (RC device) sends to the PL-8 to operate the external devices.

7.2.2 Identification Commands

Command	Syntax	Response
Read device model	MODEL?	MODEL MACHINE_MODES
Read device firmware version	VERSION?	VERSION MAJOR MINOR BUILD . REVISION

7.2.3 Reset Command

Command	Symtax	Pesponse
Reset device	RESET	RESET OK

7.2.4 K-NET management commands

Command	Syntax	Response
Change KNET number	KSET NEW_K_ID	KSET NEW_K ID RESULT
Parameter Description:		
KNET ID " 1 " or "Master" "2" ... (Slave)		

[^5]```
Note:
* Command required Admin login.
*New ID will done only after device resetting
* Connecting 2 devices with same ID over one KNET network could cause unexpected behavior.
```


### 7.3 Protocol 3000 Syntax

Protocol 3000 is used to control the PL-8 via an RS-232 connection using a PC , touch screen, other serial controller or RC type controller.

### 7.3.1 Host Message Format

| Start | Address (optional) | Body | Delimiter |
| :---: | :---: | :---: | :---: |
| \# | Destination_id@ | Message | CR |

### 7.3.1.1 Simple Command

Command string with only one command without addressing:

| Start | Body | Delimiter |
| :---: | :---: | :---: |
| \# | Command SP Parameter_ 1, Parameter_ $2, \ldots$ | CR |

### 7.3.1.2 Command String

Formal syntax with commands concatenation and addressing:

| Start | Address | Body | Dellmiter |
| :---: | :---: | :---: | :---: |
| \# | Destination id@ | Command_1 Parameter1_1, Parameter1_2,../ Command_2 Parameter2_1,Parameter2_2,../ Command_3 Parameter3_1,Parameter3 2,...... | CR |

### 7.3.1.3 Device Message Format

| Start | Address (optional) | Body | delimiter |
| :---: | :---: | :---: | :---: |
| ~ | Senderid@ | Message | CR LF |

### 7.3.1.4 Device Long Response

Echoing command:

| Start | Address (optional) | Body | Delimiter |
| :---: | :---: | :---: | :---: |
| $\sim$ | Sender id@ | CommandSP [Param1, Param2 ...] result | CR LL |

CR $=$ Carriage return $($ ASCII $13=0 \times 0 \mathrm{D})$
$\mathbf{L F}=$ Line feed (ASCII $10=0 \times 0 \mathrm{~A})$
$\mathbf{S P}=$ Space $($ ASCII $32=0 \times 20)$

### 7.3.2 Command Terms

## Command

A sequence of ASCII letters ('A'-'Z', 'a'-'z' and '-').
Command and parameters must be separated by at least one space.

## Parameters

A sequence of alphameric ASCII characters ('0'-'9','A'-'Z','a'-'z' and some special characters for specific commands). Parameters are separated by commas.

## Message string

Every command entered as part of a message string begins with a message starting character and ends with a message closing character.
Note: A string can contain more than one command. Commands are separated by a pipe ( ' 1 ' ) character.

## Message starting character

'\#' - For host command/query
' $\sim$ ' - For machine response
Device address (Optional, for K-NET)
K-NET Device ID followed by '@'

## Query sign

'?' follows some commands to define a query request.

## All outputs sign

'*' defines all outputs.

## Message closing character

CR - For host messages; carriage return (ASCII 13)
CRLB - For machine messages; carriage return (ASCII 13) + line-feed (ASCII 10)

## Command chain separator character

When a message string contains more then one command, a pipe (' 1 ') character separates each command.

Spaces between parameters or command terms are ignored.

### 7.3.3 Entering Commands

You can directly enter all commands using a terminal with ASCII communications software, such as HyperTerminal, Hercules, etc. Connect the terminal to the serial, Ethernet, or USB port on the Kramer device. To enter CR , press the Enter key.
(LF is also sent but is ignored by command parser).
For commands sent from some non-Kramer controllers like Crestron, some characters require special coding (such as, /X\#\#). Refer to the controller manual.

### 7.3.4 Command Forms

Some commands have short name syntax in addition to long name syntax to allow faster typing. The response is always in long syntax.

### 7.3.5 Command Chaining

Multiple commands can be chained in the same string. Each command is delimited by a pipe character ( ' $I$ '). When chaining commands, enter the message starting character and the message closing character only once, at the beginning of the string and at the end.
Commands in the string do not execute until the closing character is entered.
A separate response is sent for every command in the chain.

### 7.3.6 Maximum String Length

64 characters

### 7.3.7 Backward Support

Protocol 2000 is transparently supported by Protocol 3000. You can switch between protocols using a switch protocol command from either platform.

## 8 Technical Specifications

Table 6 includes the technical specifications:
Table 6: Technical Specifications ${ }^{1}$ of the PL-8 Low Voltage Relay Controller

| INTERFACE: | RS-232 9-pin D-sub Connector <br> 2 K-NET on terminal block connectors |
| :--- | :--- |
| OUTPUTS: | 4 relays on terminal block connectors, NO: Normally Open; C: Common <br> Voltage; NC: Normally Closed (36V AC or DC, 2A, 60VAC maximum on <br> non-inductive load) <br> 4 relays on terminal block connectors, NO: Normally Open; NC: Normally <br> Closed (36V AC or DC, 2A, 60 VAC maximum on non-inductive load) |
| CONTROL: | LEDs: LINK and ON |
| POWER SOURCE: | 12 VCC 130 mA |
| DIMENSIONS: | $12.1 \mathrm{~cm} \times 7.18 \mathrm{~cm} \times 2.42 \mathrm{~cm}\left(4.76^{\prime \prime} \times 2.83^{\prime \prime} \times 0.95^{\prime \prime}\right)$, W, D, H |
| WEIGHT: | $0.3 \mathrm{~kg} .(0.67 \mid \mathrm{bs})$ approx. |
| ACCESSORIES: | Power supply, mounting bracket |

[^6]
## LIMITED WARRANTY

Kramer Electronics (hereafter Kramer) warrants this product free from defects in material and workmanship under the following terms.

## how longis the warranty

Labor and parts are warranted for seven years from the date of the first customer purchase.

## WHOIS PROTECTED?

Only the first purchase customer may enforce this warranty.

## WHAT IS COVERED AND WHATISNOT COVERED

Except as below, this warranty covers all defects in material or workmanship in this product. The following are not covered by the warranty:

1. Any product which is not distributed by Kramer, of which is not purchased from an authorized Kramer dealer. If you are uncertain as to whether a dealer is authorized, please contact Kramer at one of the agents listed in the Web site www.kramerelectronics.com.
2. Any product, on which the serial number has been defaced, modified or removed, or on which the WARRANTY VOID IF TAMPERED sticker has been torn, reattached, removed or otherwise interfered with.
3. Damage, deterioration or malfunction resulting from:
i) Accident, misuse, abuse, neglect, fire, water, lightning or other acts of nature
ii) Product modification, or failure to follo winstructions supplied with the product
iii) Repair or attempted repair by anyone not authorized by Kramer
iv) Any shipment of the product (claims must be presented to the cartier)
v) Removal or installation of the product
vi) Any other cause, which does not relate to a product defect
vii) Cartons, equipment enclosures, cables or accessories used in conjunction with the product

## WHAT WE WILLPAY FORAND WHAT WE WILLNOTPAYFOR

We will pay labor and material expenses for covered items. We will not pay for the following:

1. Removal or installations charges.
2. Costs of initial techmical adjustments (set-up), including adjustment of user controls or progrannming. These costs are the responsibility of the Kramer dealer from whom the product was purchased.
3. Shipping charges.

## how you can get warranty service

1. To obtain service on you product, you must take or ship it prepaid to any authorized Kramer service center.
2. Whenever warranty service is required, the original dated invoice (or a copy) must be presented as proof of warranty coverage, and should be included in any shipment of the product. Please also include in any mailing a contact name, company, address, and a description of the problem(s).
3. For the name of the nearest Kramer authorized service center, consult your authorized dealer.

## LIMITATION OF IMPLIED WARRANTIES

All implied warranties, including warranties of merchantability and fitness for a particular purpose, are limited in duration to the length of this warranty.

## EXCLUSIONOFDAMAGES

The liability of Kramer for any effective productsis limited to the repair or replacement of the product at our option. Kramer shall not be Liable for:

1. Damage to other property caused by defects in this product, damages based upon inconvenience, loss of use of the product, loss of time, cormercial loss; or:
2. Any other damages, whether incidental, consequential or otherwise. Some countries may not allow limitations on how long an implied warranty lasts and/or do not allow the exclusion or limitation of incidental or consequential darnages, so the above limitations and exclusions may not apply to you.
This warranty gives you specific legal rights, and you may also have otherrights, which vary from place toplace.
NOTE:All products returned to Kramer for service must have prior approval. This may be obtained from your dealer.
This equipment has been tested to determine compliance with the requirements of:

| EN-50081: | "Electromagnetic compatibility (EMC); <br> generic emission standard. <br>  <br> Part 1:Residential, commercial and lightindustry" |
| :--- | :--- |
| EN-50082: | "Eletromagnetic compatibility (EMC) generic immunity standard. <br>  <br> Part 1: Residential, commercial and light industry environment". |
| CFR-47: | FCC* Rules and Regulations: <br>  <br>  <br> Part 15: "Radio frequency devices <br> Subpart B Unintentional radiators" |
| CAUTION: |  |

## CAUTION:

$\boxtimes$ Servicing the machines can only be done by an authorized Kramer technician. Any user who makes changes or modifications to the unit without the expressed approval of the manufacturer will void user authority to operate the equipment.
( $\times$ ) Use the supplied DC power supply to feed power to the machine.
© Please use recommended interconnection cables to connect the machine to other components. * FCC and CE approved using STP cable (for twisted pair products)

For the latest information on our products and a list of Kramer distributors, visit our Web site: www.kramerelectronics.com, where updates to this user manual may be found. We welcome your questions, comments and feedback.


Kramer Electronics, Ltd.
Web site: www.kramerelectronics.com
E-mail: info@kramerel.com
P/N: 2900-000329 REV 1


[^0]:    1 GROUP 1: Distribution Amplifiers; GROUP 2: Switchers and Matrix Switchers; GROUP 3: Control Systems; GROUP 4: Format/Standards Converters; GROUP 5: Range Extenders and Repeaters; GROUP 6: Specialty AV Products; GROUP 7: Scan Converters and Scalers; GROUP 8: Cables and Connectors; GROUP 9: Room Connectivity; GROUP 10: Accessories and Rack Adapters; GROUP 11: Sierra Products

    2 Download up-to-date Kramer user manuals from the Internet at this URL: http://www.kramerelectronics.com
    3 The complete list of Kramer cables is on our Web site at http://www.kramerelectronics.com

[^1]:    1 Such as lighting, screen settings, blinds, and so on
    2 K-NET is a proprietary Kramer protocol for interconnecting Kramer units
    3 The ground connection is sometimes connected to the shield of the RS-485 cable (in most applications, it is not connected)
    4 DIPs 1 to 7 are not used

[^2]:    1 You can connect up to eight relays. You do not have to connect all of them
    2 Refer to the Kramer RB-8 user manual at http://www.kramerelectronics.com
    3 See section 5.2
    4 When controlling the PL-8 via RS-232, connect the 12 V terminal block connector to a 12 V power supply

[^3]:    1 See also the blue progress indicator on the status bar

[^4]:    1 You can download our user-friendly "Software for Calculating Hex Codes for Protocol 2000" from the technical support section on our Web site at: http://www.kramerelectronics.com

[^5]:    1 Not available at the time of printing. Refer to our Web site at http://www.kramerelectronics.com for details

[^6]:    1 Specifications are subject to change without notice

